

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

A23K 1/18 (2006.01) **A23K 1/16** (2006.01)

(21) 출원번호 **10-2013-0043839**

(22) 출원일자 **2013년04월19일** 심사청구일자 **2013년04월19일**

(65) 공개번호 **10-2014-0125689**

(43) 공개일자 **2014년10월29일**

(56) 선행기술조사문헌 JP05304897 A* KR100595967 B1*

*는 심사관에 의하여 인용된 문헌

(24) 등록일자 (73) 특허권자

(45) 공고일자

(11) 등록번호

강릉원주대학교산학협력단

강원도 강릉시 죽헌길 7(지변동)

2014년12월15일

2014년12월08일

10-1472670

(72) 발명자

이상민

부산 해운대구 좌동로63번길 46, 103동 1003호 (중동, 해운대중동롯데캐슬마스터II)

최진

강원 강릉시 하슬라로206번길 3-3, 201호 (교동)

(74) 대리인 **신진만**

전체 청구항 수 : 총 2 항

심사관: 유진오

(54) 발명의 명칭 막걸리 부산물을 함유하는 넙치 양식용 배합사료조성물

(57) 요 약

본 발명은 막걸리 부산물을 함유하는 넙치 양식용 배합사료조성물을 제공하며, 막걸리 부산물을 배합사료 원료로 사용할 경우 경제성이 향상될 수 있어, 양식원가 절감을 통한 양식경영의 안정 및 어업인소득 증대에 기여할 수 있다. 이 발명을 지원한 국가연구개발사업

과제고유번호 110077033SB010 부처명 농림수산식품부

연구관리전문기관 농림수산식품기술기획평가원

연구사업명 수산기술개발사업

연구과제명 막걸리 부산물의 양어사료화를 위한 연구

기 여 율 1/1

주관기관 강릉원주대학교 산학협력단 연구기간 2010.07.01 ~ 2013.03.30

특허청구의 범위

청구항 1

막걸리 부산물 20~30중량%, 어분 55~65중량%, 어유 5~10중량%, 옥수수글루텐분 1~10중량%, α-감자전분 5~10중량%, 양조용 효모 1~5중량%, 비타민 프리믹스 1~5중량%, 미네랄 프리믹스 1~5중량%, 비타민 C 0.1~0.5중량%, 콜린염 0.1~0.5중량%, 및 타우린 0.1~0.5중량%를 포함하는 넙치 양식용 배합사료조성물.

청구항 2

제 1항의 사료조성물을 넙치에 급이하는 것을 특징으로 하는 넙치 양식방법.

청구항 3

삭제

청구항 4

삭제

청구항 5

삭제

명세서

기술분야

[0001] 본 발명은 넙치 양식용 배합사료조성물에 관한 것으로, 보다 상세하게는 양식원가 절감을 통한 넙치 양식경영의 안정 및 어업인 소득 증대에 기여하는 막걸리 부산물을 함유하는 넙치 양식용 배합사료조성물에 관한 것이다.

배경기술

- [0002] 막걸리의 제조과정은 쌀을 증기로 찐 다음 술밥에 누룩곰팡이(Aspergillus orzae)를 접종하여 전분을 포도당으로 전환시키는 작업이 선행되며 여기에 효모를 접종하여 알코올 발효과정을 거쳐 생산된다.
- [0003] 이때 막걸리를 거르고 남은 막걸리부산물 또한 대량 생산되는데 현재 막걸리 부산물은 우리나라에서 폐기물로 분류되어 처리되거나 돼지나 닭 등의 가축 사료원료로 사용되고 있다.
- [0004] 막걸리 부산물(주박)은 원료 쌀에 대하여 약 20% 정도가 얻어지는데, 전분과 단백질 외에도, 섬유소, 무기질, 비타민, 알코올과 유기산, 효소, 효모 등의 영양성분을 다량 함유한 것으로 보고되었다(Cho 등 1998).
- [0005] 이렇듯 막걸리 부산물은 이용가치가 높은 부산물임에도 불구하고 현재까지 이용분야를 찾지 못해 양돈 사료로 이용되거나 폐기하는 등 그 이용률은 적은 편이다.
- [0006] 막걸리와 유사한 곡류주나 알코올을 생산하고 남은 부산물을 사료원료로 이용하여 어종에 따른 이용성에 관한 연구는 에탄올을 추출하고 남은 옥수수부산물에 대한 연구(Webster et al., 1992a,b; Wu et al., 1996, 1997; Coyle et al., 2004; Robinson and Li, 2008)와 맥주부산물(Kaur and Saxena, 2004; Zerai et al., 2008)에 대한 연구가 여러 어종을 대상으로 수행되었으며, 각각의 어종마다 원료의 기호성이 다르기 때문에 이용성을 평가하여 사료내 적정 첨가량을 규명하였다.
- [0007] 미국에서는 옥수수를 원료로 에탄올 생산 후 남는 부산물인 주정박 (DDGS: distillers dried gains with soluble)이 생산(Li et al. 2010)되고 있으며, 이는 가축 사료의 원료로도 이용되고 있다.
- [0008] 주정박이 많이 사용되고 있는 육계의 경우 사료내 DDGS의 사용은 공급량이나 가격이 제한되어 있으며(Waldroup 등., 1981), 영양소의 함량이나 소화율도 일정하지 않아서(Noll et al., 2001), 대략 5%를 사료에 첨가하여 이용하였다 (USGC, 2006).
- [0009] Day et al. (1972)의 초기 연구에서는 CDDGS(corn distiller's dried grains with solubles)를 5%까지 급여시

육계의 증중율이 증가하였으며, Waldroup et al. (1981)은 육계 사료내 에너지 수준이 유지된다면, CDDGS를 25% 까지 첨가할 수 있으며, 높은 품질의 CDDGS는 육계 초기, 육성기 및 비육기 사료의 12% 수준까지 첨가될 수 있다고 하였다 (Lumpskin et al., 2003, 2004). Hong et al. (2008)은 육계에 CDDGS를 18% 수준까지 첨가하였을 경우 증중율에는 큰 차이가 없었으나, 섭취량은 CDDGS 비급여구가 급여구보다 증가하였다고 보고하였다.

[0010] 막걸리 부산물의 이용성을 증명하여 값싸고 좋은 사료원료가 개발되면 보다 경제적인 배합사료의 제조가 가능해 지고, 부산물 이용으로 미래 지향적이고 환경 친화적인 양식산업에 보탬이 될 것이다. 그리고 막걸리 부산물의 효능을 홍보하여 적극적으로 상품 배합사료에 사용함으로써 국내 사료원료 산업의 활성화로 관련 산업에 도움이 될 것으로 기대된다.

[0011]

발명의 내용

해결하려는 과제

[0012] 본 발명은 상기한 바와 같은 종래기술이 가지는 문제를 해결하기 위해 안출된 것으로, 그 목적은 양식원가 절감을 통한 조피볼락 양식경영의 안정 및 어업인 소득 증대에 기여하는 막걸리 부산물을 함유하는 넙치 양식용 배합사료조성물을 제공함에 있다.

과제의 해결 수단

- [0013] 상기한 바와 같은 본 발명의 기술적 과제는 다음과 같은 수단에 의해 달성되어진다.
- [0014] (1) 막걸리 부산물을 함유하는 넙치 양식용 배합사료조성물.
- [0015] (2) 제 1항에 있어서,
- [0016] 막걸리 부산물은 소맥분 혹은 소맥분 내지 어분을 대체하여 20~30 중량% 까지 첨가되는 것을 특징으로 하는 넙치 양식용 배합사료조성물.
- [0017] (3) 제 1항에 있어서,
- [0018] 막걸리 부산물 20~30 중량%, 어분 55~65 중량%, 및 어유 5~10 중량%를 포함하는 것을 특징으로 하는 넙치 양식용 배합사료조성물.
- [0019] (4) 제 3항에 있어서,
- [0020] 옥수수 글루텐분 1~10 중량%, α-감자전분 5~10 중량%, 양조용 효모 1~5 중량%, 비타민 프리믹스 1~5 중량%, 미 네랄 프리믹스 1~5 중량%, 비타민C 0.1~0.5 중량%, 콜린염(50%) 0.1~0.5 중량%, 타우린 0.1~0.5 중량%를 더 포함하는 것을 특징으로 하는 넙치 양식용 배합사료조성물.
- [0021] (5) 제 1항 내지 제 4항 중 선택된 어느 한 항의 사료조성물을 넙치에 급이하는 것을 특징으로 하는 넙치 양식 방법.

발명의 효과

[0022] 이상에서 살펴본 바와 같이, 본 발명에 있어 막걸리 부산물을 소맥분을 대체하여 20% 까지 첨가할 경우, 상품사료 및 대조사료와 비교하여 성장 및 사료이용성에 차이가 없으므로, 넙치용 배합사료 원료로 사용될 수 있을 것으로 판단된다. 또한 본 발명의 배합사료에서 사용된 막걸리 부산물을 배합사료 원료로 사용할 경우 경제성이

향상될 수 있어, 양식원가 절감을 통한 양식경영의 안정 및 어업인소득 증대에 기여할 수 있다.

발명을 실시하기 위한 구체적인 내용

- [0023] 본 발명은 막걸리 부산물을 함유하는 넙치 양식용 배합사료조성물을 제공한다.
- [0024] 이하 본 발명의 넙치 양식용 배합사료조성물에 대하여 보다 상세히 설명하도록 한다.
- [0025] 본 발명에서 탄수화물 공급원으로 사용되는 막걸리 부산물(주박)은 각 지방내지 제조회사 마다 막걸리 제조과정에서 나오는 어떠한 종류의 부산물도 본 발명의 막걸리 부산물로 적합한 것으로 한다. 이들 막걸리 부산물(주박)은 각 지방 내지 제조사 마다 차이가 있으나, 원료 쌀에 대하여 약 20% 정도가 얻어지고 전분과 단백질 외에 각종 섬유소, 무기질, 비타민, 알코올과 유기산, 효소, 효모 등의 영양성분을 다량 함유한다.
- [0026] 본 발명에서는 막걸리 부산물을 넙치 양식용 배합사료조성물의 탄수화물 공급원으로 첨가되며, 기존 배합사료에 첨가되어 오던 고가의 소맥분을 전량 대체할 수 있음은 물론, 단백질 공급원으로 첨가되어 오던 어분의 일부를 대체할 수도 있다.
- [0027] 바람직하게는 본 발명에서 막걸리 부산물은 소맥분 혹은 소맥분과 어분을 대체하여 대체하여 20~30 중량% 까지 첨가되는 것으로 한다. 막걸리 부산물의 첨가량이 20 중량% 미만일 경우에는 탄수화물 공급이 충분하지 못하여 넙치의 생육이 충분하지 못하고, 30 중량%를 초과하게 되면 다른 필수영양성분의 결핍을 초래할 수 있어 영양불균형을 야기시킬 수 있다.
- [0028] 본 발명의 배합사료조성물은 탄수화물 공급원으로 막걸리 부산물 20~30 중량%, 단백질 공급원으로 어분 55~65 중량%, 및 지질원으로 어유 5~10 중량%를 포함하는 것이 바람직하다.
- [0029] 상기와 같은 성분 및 조성을 갖는 배합사료조성물은 생존율, 사료효율, 일일사료섭취율, 일일단백질섭취율 및 단백질 효율의 모든 측면에서 기존 시판 넙치 사료에 비하여 동등 이상의 효과를 제공하게 된다.
- [0030] 또한, 본 발명의 배합사료조성물은 넙치의 생육특성 및 면역증강 등의 각종 생리활성 증진을 위해 옥수수 글루 텐분 1~10 중량%, α-감자전분 5~10 중량%, 양조용 효모 1~5 중량%, 비타민 프리믹스 1~5 중량%, 미네랄 프리믹스 1~5 중량%, 비타민-C (예로, 스테이 C 50(DSM사)) 0.1~0.5 중량%, 콜린염 0.1~0.5 중량%, 타우린 0.1~0.5 중량%를 더 포함하는 것이 바람직하다.
- [0031] 이상의 결과로부터 본 발명에 따른 배합사료조성물은 고가의 소맥분을 대체하여 폐기물의 일종인 막걸리 부산물을 20~30 중량% 대체 첨가하는 것은 넙치의 성장, 사료이용성 및 체조성에 영향을 미치지 않아 넙치 배합사료의 단가를 절감시킬 뿐만 아니라 폐자원을 재활용하여 환경오염을 방지할 수 있는 효과가 기대된다.
- [0032] 본 발명에 사용되는 성분들은 각각의 성분이 갖고 있는 특성을 유지하고 있을 뿐만 아니라, 혼합물로서 제재화하여 각자가 지니고 있는 유익성을 상승시키는 것으로 어병 발생빈도, 수온조건, pH의 상태, 어류의 생육상태에따라 혼합비율을 조절하여 사용할 수 있음은 물론이다.
- [0033] 이하 본 발명의 내용을 실시예를 참조하여 보다 상세하게 설명하고자 한다. 다만 하기 예시된 실시예는 본 발명의 이해를 돕기 위해 제시되는 것일 뿐 이에 의해 본 발명의 권리범위가 한정되는 것으로 해석되어서는 아니된다.
- [0034] [실험예 1] 막걸리 부산물의 영양성분 분석
- [0035] 쌀막걸리 부산물을 대상으로 건조 방법에 따른 영양성분을 아래 방법에 따라 조사하였다.
- [0036] 분석원료: 쌀막걸리 부산물
- [0037] 원료가공: 다양한 온도로 48시간 건조 후 분쇄(비건조, 60℃, 100℃ 및 동결건조)

[0038] - 분석항목: 수분, 단백질, 아미노산, 지질, 회분 등 (전처리 공정(온도별 건조)에 따른 막걸리 부산물의 영양 성분 분석을 표 1 및 2에 나타냄)

표 1 건조온도에 따른 막걸리 부산물의 일반성분

7	·분	건물	조단백질	조지방	회분
막걸리	비건조	24.7	19.2	7.5	0.5
부산물	60℃ 건조	90.7	20.1	8.1	0.6
·	100℃ 건조	98.2	19.1	7.8	0.5
	동결건조	96.8	19.3	8.3	0.4

표 2
건조온도에 따른 막걸리 부산물의 필수아미노산

	막걸리] 부산물
	비건조	60℃ 건조
Arg	7.1	6.9
His	2.1	2.0
Ile	3.6	3.6
Leu	8.3	8.0
Lys	3.2	3.1
Met + Cys	3.4	3.4
Phe + Tyr	9.3	10.8
Thr	5.0	4.7
Val	5.8	5.8
총계	47.8	48.3

[0041] 상기 표 1 및 2에서 나타난 바와 같이, 막걸리 부산물의 분석결과 수분, 단백질, 지질, 회분 및 아미노산은 전처리 공정(온도)에 영양을 받지 않고 유사한 값을 나타내었다.

[0042] [실시예] 배합사료조성물의 제조

[0039]

[0040]

[0044]

[0043] 실험사료는 표 1에 표시한 바와 같이 막걸리 부산물의 이용성을 조사하기 위하여 대조사료(DDG0)의 소맥분 대신 막걸리 부산물 20% 첨가(DDG1), 어분 및 소맥분 대신 막걸리 부산물 20%(DDG2), 28% 첨가(DDG3) 및 시판용 넙치 배합사료(CF)를 준비하였다. 대조사료는 어분을 단백질원으로, 어유를 지질원으로, 탄수화물원으로는 소맥분을 각각 사용하였다.

표 3 실험 배합사료의 조성(%)

성분		사료조성				
	DDG0	DDG1	DDG2	DDG3	CF ¹	
명태어분	62	62	57	57		
소맥분	18					
옥수수글루텐분	4	2	7			
막걸리 부산물	0	20	20	28		
α-감자전분	7	7	7	7		
양조용 효모	1	1	1			
어유	5	5	5	5		

비타민 프리믹스	1	1	1	1	
미네랄 프리믹스	1	1	1	1	
스테이-C(Stay-C) 50	0.3	0.3	0.3	0.3	
콜린염(Choline salt)	0.2	0.2	0.2	0.2	
타우린	0.3	0.3	0.3	0.3	

[0045] CF¹ : 시판사료

[0046] 실험 사료의 성분은 AOAC 방법(1990)에 따라 분석하였는데, 조단백질(Nu6.25)은 자동 분석기(Vapodest 5/6, Gerhardt)를 사용하여 분석하였고, 조지방은 에테르를 사용하여 추출하였으며, 조섬유는 자동 분석기(Fibertec, Tecator)를 이용하였고, 조회분은 550℃의 회화로에서 4시간동안 태운 후 정량하였다. 그 결과를 하기 표 4에 나타내었다.

표 4 실험사료의 영양성분 (%)

[0047]

성분 함량	DDG0	DDG1	DDG2	DDG3	CF ¹
조단백질	54.7	54.7	54.5	51.2	54.7
조지방	10.8	11.1	11.4	11.9	10.5
회분	10.6	10.5	9.9	9.7	12.4
N-free extract ⁴	24.1	24.0	24.8	27.4	22.4
Essential amino acid composition	(% in proteir	1)			
Arg	6.0	6.3	6.1	6.5	
His	4.6	4.6	4.3	4.5	
Ile	4.0	4.1	4.0	4.2	
Leu	8.3	8.3	8.9	8.2	
Lys	7.5	7.2	6.7	7.0	
Met+Cys	4.0	3.9	4.0	4.0	
Phe+Tyr	7.3	7.4	7.6	7.4	
Thr	4.7	4.7	4.7	4.8	
Val	4.8	5.0	4.9	5.1	

[0048] 상기 표 3의 원료를 잘 혼합하고, 습사료(moist pellet) 제조기로 성형한 후, 60℃ 건조기에서 건조하여 실험사료는 -30℃에서 보관하면서 사용하였다.

[0049] [실험예 2] 실험어의 사육 및 관리

[0050] 사육실험은 총 15개의 플라스틱 수조(50ℓ 직사각형 수조)에 외형적으로 건강한 어린 넙치(평균무게: 16.0± 0.03g)를 각 수조에 25 마리씩 3반복으로 수용한 후 실험사료를 실험어가 먹을 때까지 1일 2회(09:00, 17:00 h) 공급하면서 7주 사육실험을 하였다.

[0051] 사육기간 중 각 수조마다 여과해수를 1ℓ/min로 조절하여 흘려주었으며, 이틀에 한번 수조를 청소해주었다. 사육실험 기간 동안 죽은 개체는 매일 제거해 주었다. 평균 수온은 20.3℃였다.

[0052] [실험예 3] 실험어의 성분분석

[0053] 실험사료와 어체의 일반성분은 AOAC (1995) 방법에 따라 조단백질(N以6.25)은 Auto Kjeldahl System (Buchi B-324/435/412, Switzerland)을 사용하여 분석하였고, 조지방은 에테르를 사용하여 추출하였다. 수분은 105℃ 드라이오븐에서 6시간 동안 건조 후 측정하였고, 회분은 600℃ 회화로에서 4시간 동안 태운 후 정량 하였으며 총에너지는 열량분석기(Parr 1356, USA)를 이용하여 분석하였다.

[0054] 또한, 아미노산은 시료를 6N HCl로 110℃ 샌드배스(sand bath) 상에서 24시간 가수분해한 후, 감압 농축하고, Automatic amino acid analyzer (L-8800, Hitachi, Column: Ion exchange, Injection Pump: Pressure 0-19.6Mpa, Flow Rate 0.05-0.99 ml/min, Column Oven: Electrothermal cooling (30-70℃), Reaction Unit: Reaction Column (135℃, 50℃), Photometer: Wavelength 570 nm, 440 nm)를 사용하여 분석하였다.

[0055] 혈장성분의 변화를 조사하기 위해 각 실험구당 5마리씩 무작위로 추출하여 헤파린 주사액이 처리된 1㎡ 주사기를 사용하여 실험어의 미부 혈관에서 채혈하였으며, 채혈한 혈액은 7500rpm에서 10분간 원심 분리하여 얻은 혈장을 분석을 위해 동결보존(-70℃)하면서 분석하였으며, 임상용 키트를 사용하여 총 단백질은 뷰렛법으로 포도당은 효소법으로, 콜레스테롤은 COD-POD법으로 트리글리세라이드는 유리 글리세롤 소거법을 사용하여 각각 분석하였다.

[0056] 전자스핀공명장치(ESR)를 이용한 DPPH 라디칼, 알킬 라디칼, 수산화 라디칼 (OH), 초과산화 라디칼 소거능을 측정하였다.

[실험예 4] 생존율 및 증중율 측정

상기 실시예 2의 표 3에 나타난 막걸리 부산물이 첨가된 배합사료를 7주간 사육실험한 결과를 하기 표 5, 6에 나타내었다.

표 5 생존율 및 증중율

[0059]

[0057]

[0058]

실험사료	Initial wt (g/fish)	Survival (%)	WG (%) ¹	SGR (%) ²
DDG0	16.0 ± 0.06	94.0±2.31 ^{ns}	152.5±0.98 ^b	1.32 ± 0.01^{b}
DDG1	15.9±0.03	74.7±9.33	138.1±4.62 ^{ab}	1.24±0.03 ^{ab}
DDG2	16.0±0.03	69.3±3.53	133.5±10.87 ^{ab}	1.21±0.07 ^{ab}
DDG3	16.0±0.03	65.3±10.91	110.1±13.80 ^a	1.05±0.09 ^a
CF	15.9±0.03	78.7±1.33	157.3±10.68 ^b	1.35±0.06 ^b

[0060] ¹ 증중율 = (최종 어체중량-초기 어체중량) × 100 /초기 어체중량.

[0061] ² 일간성장율 = [(ln (최종 어체중량) - ln (초기 어체중량)]×100/급이일수.

표 6 사료이용성

[0062]

실험사료	FE (%) ²	DFI (%) ³	DPI (%) ⁴	PER (%) ⁵
DDG0	114.0±2.21 ^{ns}	0.99±0.03 ^{ns}	0.54±0.02 ^{ns}	$2.09 \pm 0.04^{\text{ns}}$
DDG1	102.0±8.81	0.95 ± 0.07	0.52 ± 0.04	1.88 ± 0.16
DDG2	104.4 ± 6.54	0.99 ± 0.01	0.54 ± 0.01	1.94 ± 0.12
DDG3	100.7 ± 16.8	0.91 ± 0.06	0.46 ± 0.03	1.98 ± 0.33
CF	121.4 ± 16.9	0.91 ± 0.06	0.50 ± 0.03	2.22±0.31

[0064] ² 사료효율= 습증중량×100/사료섭취량

[0067]

[0068]

[0069]

[0071]

[0065] ³ 일일사료섭취율=사료섭취량×100/[(초기 어제중량+최종 어제중량+사체중량)×양식일수/2].

[0066] ⁴ 일일단백질섭취율=단백질섭취량×100/[(초기 어체중량+최종 어체중량+사체중량)×양식일수/2].

⁵ 단백질 효율=(습증중량/단백질 섭취량)×100.

상기 표 5에 나타낸 바와 같이, 생존율, 사료효율, 일일사료섭취율, 일일단백질섭취율 및 단백질 효율은 실험구간에 유의차가 없었다(P>0.05). 생존율은 모든 실험구간 유의한 차이가 나타나지 않았다. 성장률 및 일간성장율은 소맥분 대신 막걸리 부산물 20% 첨가, 어분 및 소맥분 대신 막걸리 부산물 20% 첨가 및 상품사료 실험구가대조사료와 유의한 차이가 없었다. 하지만, 어분 및 소맥분 대신 막걸리 부산물 28% 실험구는 대조구 및 상품사료 실험구보다 유의하게 낮았다. 사료효율 및 단백질효율은 막걸리 부산물 첨가에 영향을 받지 않아 모든 실험구간 유의한 차이가 나타나지 않았다.

표 7 넙치 전어체의 성분비 분석

	T.				
			실험사료		
	DDGO	DDG1	DDG2	DDG3	CF
조성					
수분	75.4 ± 045	73.9 ± 0.14	75.3 ± 1.33	72.8 ± 0.02	75.3 ± 1.32
조단백질	18.4 ± 0.65	17.8 ± 0.29	16.9 ± 0.61	17.3 ± 0.08	17.6±0.75
조지방	2.8 ± 0.05^{a}	3.5±0.06 ^{ab}	4.2±0.32 ^b	4.1±0.61 ^b	3.8±0.15 ^{ab}
회분	4.1±0.17°	3.4±0.04 ^{ab}	3.1±0.35 ^a	4.0±0.14 ^{bc}	3.3±0.18 ^a
필수아미노산		•			
Arg	6.9 ± 0.12	6.8 ± 0.03	6.8±0.03	6.8 ± 0.03	6.9 ± 0.03
His	2.2 ± 0.01	2.1 ± 0.01	2.1±0.01	2.1±0.01	2.2±0.03
Ile	3.9 ± 0.06	3.8 ± 0.06	3.8 ± 0.09	3.9 ± 0.09	3.8 ± 0.18
Leu	7.7 ± 0.10	7.5 ± 0.01	7.6 ± 0.01	7.5 ± 0.09	7.6 ± 0.17
Lys	8.7 ± 0.12	8.4 ± 0.03	8.5±0.01	8.4 ± 0.06	8.4±0.18
Met + Cys	3.9 ± 0.03	3.9 ± 0.07	3.9 ± 0.09	4.0 ± 0.03	3.9 ± 0.03
Phe + Tyr	7.2±0.09	7.1 ± 0.03	7.2 ± 0.07	7.1 ± 0.07	7.2 ± 0.12
Thr	5.1±0.37	5.0 ± 0.35	5.1 ± 0.40	5.4 ± 0.38	5.5 ± 0.43
Val	3.2±1.33	4.5 ± 0.06	4.5±0.09	4.5±0.07	4.5±0.15

[0070] 상기 표 7에 나타난 바와 같이, 넙치 전어체의 수분 및 단백질 함량은 막걸리부산물 첨가에 따른 영향을 받지 않아서 모든 실험구간 유의한 차이가 나타나지 않았다. 전어체의 지질 함량은 어분 및 소맥분 대신 막걸리 부산물 20% 및 28% 첨가 실험구가 막걸리부산물 무첨가 실험구보다 유의하게 높았다. 전어체의 필수아미노산 조성은 모든 실험구간 유의한 차이가 나타나지 않았다.

표 8 넙치 혈액성상 분석

실험사료	총단백질	포도당	GOT (IU/L)	콜레스테롤	트리글리세라이드
	(g/dl)	(mg/dl)		(mg/dl)	(mg/dl)
DDG0	$2.9 \pm 0.05^{\circ}$	$22.3 \pm 1.76^{\text{ns}}$	$13.7 \pm 1.20^{\text{ns}}$	$195 \pm 10.4^{\text{b}}$	82.5 ± 1.50^{b}
DDG1	2.7 ± 0.15^{bc}	27.0±5.51	16.3±1.86	152 ± 17.6^{ab}	43.0±1.15 ^a

DDG2	2.8±0.01°	24.0±5.29	27.0±3.00	169±9.9 ^{ab}	55.3±8.83 ^a
DDG3	2.4±0.14 ^a	31.7±3.53	17.3±2.60	138±18.4°	35.3±6.57 ^a
CF	$3.0\pm0.13^{\circ}$	21.0±1.15	23.0 ± 6.08	243 ± 4.1°	80.7±10.7 ^b

[0072] 상기 표 8에 나타난 바와 같이, 혈액의 포도당 및 GOT 함량은 모든 실험구간에 유의차가 없었다. 총단백질은 어분 및 소맥분 대신 막걸리 부산물 28% 첨가 실험구가 가장 낮은 값을 나타내었으며, 콜레스테롤은 상품 사료실험구가 가장 낮은 값을 보였다.

丑 9

[0073]

혈액의 라디칼소거활성

		라디칼 소거활성(%)						
	DPPH	수산화 라디칼	알킬 라디칼	초과산화 라디칼				
실험사료		혎	!장					
DDG0	$66.9 \pm 0.96^{\text{ns}}$	$39.0 \pm 11.23^{\text{ns}}$	79.6±1.19 ^{ns}	23.5±7.48 ^{ns}				
DDG1	62.6±3.24	45.3 ± 12.25	81.7±1.38	30.9 ± 2.95				
DDG2	66.2±1.10	41.1±4.75	82.6±1.07	32.1 ± 6.00				
DDG3	64.7 ± 1.78	44.5 ± 7.27	78.9 ± 3.35	35.8 ± 2.94				
CF	65.3 ± 0.35	56.5±5.11	72.7 ± 6.93	33.0 ± 9.47				

- [0074] 상기 표 9에 나타난 바와 같이, 혈액의 수산화 라디칼, 알킬 라디칼 및 초과산화 라디칼은 막걸리 부산물 무첨가 실험구보다 막걸리 부산물 첨가구에서 증가하는 경향이 나타났지만, 모든 실험구간 유의차가 없었다.
- [0075] 이상의 결과로부터 본 실시예의 배합비에서 소맥문을 대체하여 막걸리 부산물을 20%까지 첨가하는 것은 넙치의 성장, 사료이용성 및 체조성에 영향을 미치지 않아 넙치 배합사료 단가를 절감시킬 수 있을 것으로 기대된다.
- [0076] 상기와 같이, 본 발명의 바람직한 실시 예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.