포터블 가공로봇 기술

정밀제어연구센터 | 박영식

○ 본 기술은 기존의 직축 메커니즘에서 벗어나 가공 자유도, 설치 환경, 작업 범위 등의 제약 조건에 대한 갈증을 해소시킬 수 있는 기술임. 원점 좌표 이 동이 가능하며 다관절 매니퓰레이터를 이용하여 불규칙한 구조위에서 대형 부품 가공이 가능함. 또한 용접, 마킹, 연마, 유지보수 등의 응용분야에서 확장성을 지님.

기술개념 및 구성

■ 기술개념

▶ 본 기술은 공작기계의 응용·확장성을 위해 매니퓰레이터를 기반으로 새로운 메커니즘의 가공로봇과 통합 시스템을 만드는 것

■ 기술의 구성도

▶ 매니퓰레이터 기반 포터블 기공로봇의 구조 설계와 직관적인 조작이 가능한 PC 기반 제어기 개발

[가공로봇 구조]

[가공로봇 프로토타입]

[매니퓰레이터 기반 메커니즘과 프로토 타입]

[제어 프로그램]

[항공기 유지보수]

[대형 부품 용접] 📉

[대형 선박 유지보수]

기계 부품 가공]

[포터블 가공로봇의 응용분야]

1. 기술 개요

■ 기술개발의 필요성

- ▶ 고속/정밀 생산에 초점이 맞춰진 기존의 공작기계들은 직축 메커니즘에 고 강성으로 설계되어 수동적이며 중량이 큼. 그리고 제한된 장소에서 소 형 부품을 가공함
- ▶ 하지만, 선박, 항공기, 굴삭기 등에 부착된 대형부품들을 수정 가공하기 위하여 기존 공작기계를 사용하는 것은 비경제적이며 한계성이 있음
- ▶ 이러한 이유로 대형 시스템에 탈부착이 용이한 휴대용 가공기에 대한 산 업의 요구가 증가함

2. 기술 내용

■ 기술의 특징

- 기존의 직축 메커니즘에서 벗어나 가공 자유도, 설치 환경, 작업 범위 등 의 제약 조건에 대한 갈증을 해소시킬 수 있음
- 원점 좌표의 이동이 가능하여 불규칙한 구조 위에서 대형 부품을 가공할
- 유연한 작업반경 확보를 통한 다양한 물체 가공이 가능함
- ▶ 기술의 상세 규격
- 매니퓰레이터 기반 가공로봇 구동 메커니즘
- 5축 가공로봇용 제어 통합구동시스템 기술
- PC 기반 CNC 프로그램

■ 경쟁기술과 차별성

- ▶ 국내외 유사 · 경쟁 기술 현황
- 포터블 가공로봇 기술

국내	기술명	휠기반 모바일 공작기계 기술		
	기술 내용	가공물 위를 이동하기 위한 마그넷 휠 기반 모바일 공작기계 기술		
	기술명	Hexapod 기술		
	기술 내용	매니퓰레이터 기반 6개의 다리를 가진 모바일 공작기계 로봇 기술		
국외	기술명	Omni-wheel 매니퓰레이터 가공기 기술		
	기술 내용	전방향 이동이 가능한 이동체에 매니퓰레이터 기반 가공로봇을 결합한 기술		

▶ 경쟁 기술 대비 우수성

경쟁기술	본 기술의 우수성
매니퓰레이터 기반 포터블 가공로봇	원점 접촉 설치 방식으로 불규칙한 가공물에서의 설치 및 가공이 가능한 5축 포터블 가공로봇 탈부착식 형태로 대형가공물 강성을 버틸 수 있으며 가공정밀도 보상이 가능 사용자가 직관적으로 조작할 수 있는 제어 프로그램 기술

3. 기술의 시장성

■ 기술 응용분야 및 제품

- 공작 기계 제조업
- 일반 기계 공업의 가공공정을 활용하는 전방위 산업

[공작기계]

■ 시장이슈

- 작기계에 CNC(컴퓨터 수치제어)가 도입된 이후에도 지속적인 연구개발 을 통해 고도화되고 있음
- 최근 3D모델링의 확산을 통해 공정설계 및 가공을 자동으로 수행하거나 3D프린팅 기술을 접목한 하이브리드 공작기계가 개발되는 등 고도화 진
- 공작기계 고도화에 따라 독일, 일본, 이탈리아 등 선진국 생산량은 증가 한 반면 중국은 로컬업체 핵심기술 부족으로 생산 감소세
- 공작기계는 스마트 공장의 제조기능을 담당하며, 4차 산업혁명시대의 제 조업 경쟁력 제고를 위한 핵심요소로 작용할 것으로 전망됨

Supply chain


•본 기술은 기존 직축 메커니즘에서 벗어난 자유도가 높은 모바일 공작기 계로, 다양한 물체가공이 가능한 기술로 다방면의 산업에서 활용 가능한 범용성 높은 기술임

■ 수요전망

- 공작기계산업의 시장규모는 경제/경기 호황 영향을 받으며 밀링머신, CNC공작기계 등 다양한 부분들로 세부 시장들이 구성되어있음
- 세계 공작기계 시장은 2019년 777억 달러에서 2027년에는 연평균 3,2% 성장한 983억 달러로 성장할 것으로 예측 되고 있음

[세계 공작기계 시장 규모 추이]

자료: Markets And Markets, 2019

4. 주요 연구성과

■ 특허 출원 및 등록 현황

구분	특허명	국가	번호	년도
출원	공작기계	한국	10-2018- 0094197	2018
등록	이동형 5축 가공기 구동 소프트웨어	한국	C-2018- 008622	2018

■ 기술의 완성도

- ▶ TRL 5 수준의 기술완성도 단계 : 시스템시작품 제작 및 성능 평가
- ▶ 개발 기술 범위 : 포터블 가공로봇
- 매니퓰레이터 기반 가공로봇 구동 메커니즘
- 5축 가공로봇용 제어 통합구동시스템 기술
- PC 기반 CNC 프로그램
- ▶ 기술개발 완료 시기
- 2019년 12월 : 5축 포터블 가공로봇 및 CNC 프로그램 개발

5. 기대 효과

■ 기술 도입 효과

- ▶ 경제적인 효과
- •세계 시장규모는 2010년도 기준 350억 달러 규모로서 향후 중국등 신 흥공업국에서의 공작기계 수요가 증가될 전망이고 자동차 · 항공 · 선박 산업 등 주요 수요산업의 지속 성장으로 발전 및 개발 가치가 매우 높음. 하지만, 일본과 독일의 선도 아래 상위 5개국이 세계시장의 약 70%를 점유. 국내 시장규모는 2010년도 기준 19억 달러로 세계 7위이며 지속 적인 투자가 이루어지고 있지만 넘어서기엔 부족한 면이 있음
- 새로운 메커니즘의 가공로봇과 사용자 중심 개방형 CNC 기술로 다양한 곳에서 수요가 발생할 것으로 판단되며, 새로운 시장이 형성이 되면서 복 잡하고 고가인 일본 · 독일 공작기계에 대한 의존도를 낮출 수 있음.

■ 기술 · 산업적 파급 효과

- ▶ 기술적 파급 효과
- 공작기계 산업은 다양한 기술집약적 산업으로 기술의 고착화가 된 현상 태에서 새로운 메커니즘을 가진 가공방법을 확보함으로써 다양한 응용 기술을 선도할 수 있음
- •국내의 IT 산업의 강점을 이용하여 차세대 CNC로 포터블 가공로봇 네 트워크를 구축할 수 있음. 군집 가공, 공작기계 단기 임대, 가공품 A/S 등 새로운 인프라 구축 가능.
- Open NC의 적용으로 많은 수요자가 접근하기 쉬워지며, 생산공정 외 다양한 수요처에 맞춤형 가공로봇을 제공하여 공작기계산업이 활성화 됨.

KERI 우수기술 Vol.6 125